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1. INTRODUCTION

1.1. Average Widths and Optimal Recovery
Let 1 <p < o, let E be a measurable subset of R? and let L,(E) denote
the Banach space of measurable functions x(-) on E with the norm

1/p

lgi={ [ P ax} " 1<p<

1/ 2.0y 2= ess sup | f(x)], p=©.

xeE

For convenience, we write |||, instead of ||| ., re)-
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In [2, 3, 5, 7], the authors studied some problems of the average widths
and optimal recovery of Sobolev classes of smooth functions defined on the
Euclidean space R in the metric of Lq(Rd) and obtained some exact results
(for d=1) and some weak asymptotic results (for d> 1), respectively. In
the present paper, we study the same problems in Besov spaces defined on
R To do these, as in [2, 5], we mention some needed terminology here.

Let «>0 and let P, be the continuous linear operator in L,(R?) defined
by P, :=y.(-)x(-), where y,(-) is the characteristic function of the cube
[ —a, a]? Let £>0, and let L be a subspace of Lp(Rd). We define

K(x, L, L,(RY):=min{neZ, |d,(P(LBL,R?),L,(R%)<¢e},

where d,(A4, X) denotes the Komolgorov n-width of 4 in X. The average
dimension of L in L,(R¥) is defined to be

— . Ko, L, L(R%)
dyy . e P
dim(L, L,(R)) := shil}) hanlg}f (20

Let 6>0 and let C be a centrally symmetric subset of L,(R¢). The
average Kolmogorov o-width (average o—K width) of C in Lp(Rd) is
defined to be

d(C, Ly(RY):=inf sup —inf |x(-) = y(-)] ,cre)s

L x(-)eC y(-)eL

where the infimum is taken over all subspaces L c Lp(Rd) such that
dim(L, L,(RY))<o.

The average linear o-width (shortly, average o—L width) of C in Lp(Rd)
is defined to be

dy(C, L(RY):= inf sup [x(-)—Ax(-)],,

(Y, 4) x()eC

where the infimum is taken over all pairs (Y, A) such that, for each pair

(Y, 4), Y is a normed space which is continuously imbedded in L,(R?),

CcY, A is a continuous linear operator from Y to L,(R?), and

dim(Im 4, L,(R?)) <o, while Im 4 denotes the range of the operator A.
It follows at once from the definitions that

dy(C, L(R)) <d(C, L,(R). (1.0)

For g >0, let @, be the set of all sequences &= {¢,}, .z of points &, in R?,
ve Z4, satisfying the following conditions:
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(i) |&,] <&y, if and only if |v| < |V'| for v, v € Z¢,
(i) &, #¢E,, if and only if v#y for v, v € Z¢,

card(é N[ —c, c]9) -

X 0.

(111) card & := hcnl glf 207

Here |-| is the usual Euclidean norm, and card(é n[ —c, c]9), for any
¢ >0, denotes the number of elements of the set N[ —c, ¢]%

Let X(R? be a normed space of functions on RY with the norm ||| .
Put

E(4, B, X) := sup inf [x(-)—y(-)llx

x(-)ed y(-)eB

for the subsets 4, B of X(R?).
Let K < X(R?). The quantity

dK):= sup [x(-)=y(-)lx

x(-), y(-)e K

is called the diameter of K. For e @, the information of f € K is defined
by 1. f={f(&,)} ez I: is called a standard sampling operator of the
average cardinality <o. The quantity

A,(K, X):= inf supd(I;'I; fnK)

£eB, fekK

is called the net width or the minimum information diameter of the set K
in the space X(R?). If K is a balanced and convex subset of X(R9), then

4,(K. X)=2 inf sup{|fllx: I f =0. feK}.

For any ¢€®,, a mapping ¢: I.(K)— X(R?) is called an algorithm and
@-1: fis called a recoverying function of /'in X(R¢). Denote by @ the set
of all algorithms on K. If ¢ can be extended into a linear operator on the
linearized set of K, we call the algorithm ¢ to be linear. Denote by @é the
set of all linear algorithms on the linearized set of K. The quantity

E K, X):= inf inf sup || f—e(l: f)lx (1.1)

(€O, ped: feK

is called the minimum intrinsic error of the optimal recovery of the set K
in the space X. Taking d% in the place of @, in right side of (1.1), we
denote the obtained quantity by EX(K, X) and call it the minimum linear
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intrinsic error. If K is a convex and centrally symmetric subset of X, then
by [13], there hold the inequalities

LA,(K. X) < E,(K, X) < EX(K, X). (12)

1.2. Besov Classes
Suppose that ke N. For each f e L,(R?),

k k
A f(x)= 3] (—1>’+k<
I1=0

l>f(x+lt) (1.3)

is the kth difference of the function f at the point x with step z. When
t=(0,..,0,1,0,..,0), we denote A7 f(x) by 47 f(x).

s bjo

DerFINITION 1. Let ke N, r>0,k—r>0,1<0< o0, and 1 <p<oo. We
say fe B;H(Rd) if the f satisfies the following conditions:

(i) feL,(RY),

o R R

le]” 2]

147 fCl,

(ii) Hf”b;g(Rd) =

sup 0= c0.

|t] #0 |t|r ’

(1.4)

By [4], the linear space B;,g(Rd) is a Banach space with the norm

1 sty = 1F 1+ 1 gy

and is called an isotropic Besov space.

DEFINITION 2. Let k=(ky, .. k)€ Z%, r=(ry, .nry), 1,>0, k;>r;,
j=1,..,d 1<0<o0, and 1 <p<oo. We say fe B;B(Rd) if it satisfies the

following conditions.

(i) feL,(RY),

1A% fCH N\ dr o
{Jd<t’p> dl’} < o0, 1<0< o0,
R

i 517 ) 1yl
(i) SNy ppere == 4% £,

sup —'———— < 0, 0= o0,
tj;éo |tj| /

forj=1,...d.
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By [4], the linear space B;,g(Rd) is a Banach space with the norm

d
1/ s,y =111, + 2 (PATYRRe O
j=1

and is called an anisotropic Besov space. When 6= o0, Bj o(R?Y) and

B!,(R?) coincide with the Holder—Nikolskii spaces H'(R) and H *(RY),

respectlvely When r, = .- =r,, from [4], we see that B’ o(RY) =Bl (Rd)
For a real vector M= (M, .., M,;), M;>0,j=1, .. d we deﬁne

Speb(RY) :=1{ f € L(RY) || fllpy,re) < 1},
SroB(R?) :={f € L(R"): | [ s,mty <1},
Spob(RY) :={f € Ly(RY) : | f 7 porty < My =1, o},
StoB(RY) :={f€ L(RY) : || f |l gty ey < 1}-

1.3. Main Results

Let p>0,v=(v{,..,v,), v,>0, i=1,..,d, and 1<p<oo. Denote by
B2(R?) the set of all those functions from L (Rd) in which for each function
/ the support of the Fourier transform f in the distributional sense of f is
contained in [ —v;,v,|x --- X[ —v,, v,]. The Schwartz theorem states
that B?(R“) coincides with the set of all theose functions from L,(R?)
which can be continued analytically to entire functions of type w < v. Here
w<v means that w;<v,, j=1,..d, for each weR?% ={xeR?: x;>0,
j=1,..,d}.

The approximation features of periodic Besov classes have been studied
by many authors [9, 12]. In this paper, we study the problems of the
average Kolmogorov width, average linear width, and optimal recovery of
the Besov classes S7,b(R?), S7,B(R?), S%,b(R?), and S%,B(R?), and obtain
the following results.

THEOREM 1. Letk=(ky, ... k) €Z% v =(ry, . I'y), k;>r;>0,j=1,..d,
I1<0< o0, 1<p<owo, and c=1. Then

(1) po~ << d (A, L(R) <d (<, L,(R")

<sup | =T, o fl,<<po™?,
feod

where of = S;,gb(Rd) or S;HB(Rd), a=( ;{=1 1/r; ) L= H]_l M]‘.’/’f (when
o =87, B(RY), u=1), and T, f will be defined in Section 2.

(2) B"(G)(Rd) is a weakly asymptotic optimal subspace of average
dimension <o for d (.</, L (Rd)) where p(a)=(p(a), ..., pa(0)), p:(a)>0,

1s s Pd
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is defined by p,(o)=(u""Mc*)""i (when of =S%,B(R), p,(a)=ac""),
=1, d.

Since B, (R?)=By;~"(RY), then, taking M;=1, r;=r, j=1,..,d, in

Theorem 1, we have a corollary of Theorem 1 as follows.

COROLLARY 1. Let keN, r>0, k—r>0, 1<0< o0, 1<p<oo, and
oc=1. Then

(1) o~ <<d, (M, L(R))<d,(M,L,R")

< sup Hf_ Tpl,.“,pdf“p <<0.—r/d’
feH

where M = S;Bb(Rd) or S;BB(Rd).
(2) ij(d)(Rid) is a weakly asymptotic optimal subspace of average
dimension a for d (M, LP(R")), where p(a) =0 is defined by p(c)=c"".

THEOREM 2. Let ke N,r>d/p, k—r>0, 1<0< o0, 1<p<ow, and
o=1. Then

g % AG(S;gB(Rd)’ LP(Rd)) < Ea(S;,gB(Rd), Lp(Rd))
< EL(ST,B(RY), L(RY) <o/,

In the remainder of the paper, the constants ¢, ¢}, ¢,, ... are dependent
only on d, p, 0, and r.

2. PROOF OF THEOREM 1

To prove Theorem 1, we first give some lemmas as follows.

LemmA 1 (cf.[1]). Let p>0, v=(v{,..,v,), v;>0, j=1,..,d, and
1<p<oo. Then

vl...vd
(m)*

dlim( B{:(Rd)a Lp(Rd)) =

Let B(/Y) denote the unit ball of the space /).

LemMa 2 (cf. [11]). If1<p<oo, 1 <n<N, then

d(B(1y), 1)) =1,
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where d, (A, X) denotes the usual Kolmogorov n-width of A in X, while X is
a normed linear space and A one of its subsets.

Proof of Theorem 1. To find the upper bound, we first construct the
following continuous linear operators from B}, o R to L (Rd). For any
felL (Rd) te R% and natural number /, one has the equation

! /1
(=D)AL f(x)=(—1)"*1 _Z (—1)’“<j> f(x+ jt)

/
= ¥ dfx+ )~ ()

where Y/ =1. For any real number v> 0, let

_]*1

: t 2s
g (1) =A;] <smlv> (teR, 25> 1),

be an even entire function of one variable of exponential type 2sv, where
Ay, = r(sin vt/t)zs dt =v*~!L vooo. Let p=(py, .y pa), p;>0,i=1, ., d.
For any f e BY,(R?), set

T (fox) = | g (1= )+t i)+ fx)) i

_f gp, l) Z dfxl’-"y t*l!xi+jtiaxi+1>msxd)dti

j=1

= j Gpi(ti_xi) f(xla s Xj 15 [i’ Xigt1s oo xd) dti:
R

where Gpi(t)=2fi=1(dj/j) g,(t/j). By [4], G, (1) is an entire function of
one variable of exponential type 2p;s. Set

W 5X) =] Gu) Gy u,)
X (X A Uy oy Xyt Upyy Xy 15 s Xg) AU,

l<n<d. Then T, _,, is an entire function of d variables of exponential
type p=(2spy, ... 2sp,) (cf.[4]). Let 2s>d+max{r,, i=1,..,d}. By the

Minkowskii and Holder integral inequality, we have
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p 1/p
dx>

1= Ty oty =( [Tt 4ttt

<[ 148 7)1, g (1) dy

k
:J <|A"1f(.)9|1’ |ty |10 g (1) dit,
R |t1|”+(1/)

_( (MRS
S JR i ram ) 4
: ) 1/6
([ e om g, 1ol ar, )
R

<c py " Hf“b;‘l (RN

where 1/0+1/0' =1. Moreover, we have

1Ty, (s %) =Ty, oo (fs X)

SO+, X0, 00 Xg) diy

=] Gp(10) G(02) fs1 11,52+ 1. o ) iy

| Gt (s 11, 520 e xg) dy

p

SJR go(t0) 1hCp dty = [[AC-)]] 5,

where h(xlax2a"'> xd):f(xl>x2>"" _‘.R x1’x2+[2’
Xxz) dt,.
Similarly to (2.1), we can get

1, <ea p 1f b2 iy

Inductively, for 2 < j<d, we have

1T (fx fx <ijj_rj Hf”b)gpg(Rd)'

(2.1)
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Hence, by (2.2), we have

1/ (x paSsX)
= ”f(x)_Tpl(j; X) (f x p1 pz(f X) _Tp|,.‘.,pd( ,X)Hp
<c ) p;v Hf“b):j]:pa(Rd). (2.3)

By (2.3), it is easy to see that

1Ty, pulfo ) |p\<|f| iy £ s (Rd)>max{1 &,

Jj=1

where ¢=cmax{p; 7, 1 <]<d} Thus, the operator A,: B5,(R?) — L,(R),
Ay f(-)=T, . ,,(f+), is continuous and linear. Put 2sp;= (a)
(u='M;c%)"7 (when o7 = S%,B(R?), put p;(g)=05*"). Then, by (2 3) and
Lemma 1, we have

di( A, L(R)) < sup | f(x) =T, (s ),
fedd J
<csup ) P j”f“bf (R U0 A
feo j=1

To find the lower bound, let A= (1, .., 4,), A;=(M;u"'(20)%)
(when .o/ =87 B(R?), J,=(20)~“"), i=1, ..., d, and the non-zero function
#(x)e C*(R) with supp(¢) < [0, 1]. For each j=(j;, ..., j;) €Z¢ and any
t=(ty, .., t;) € R? set

d
@, (1) :=1] (At — )
k=1

Then @, C*(RY), and supp @, , <4, ;:=[ji A, (ji+1) 4 ]x - x
LJata> (Jat+ 1) A4l

For any N>0, set m,;(N):=[NAi7']. We define a set of functions as
follows,

Lm,lzspa‘n{@j,ﬂ.(t): _mkgjkgmk_ 15 k= 19 ey d}9

then, the space L, , is of dimension 1, =1¢_, (2m,). For any feL,, ;, it
is easy to see that

supp fe [ —mydy, myA ] x - X[ —mghy, mgig]l <[ =N, N]d-
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If we write
m;—1 mg—1
fy=% - X a, . L),
J1=—mj Ja= —mq
then
d  \lp
= T14) " 100,001 el (24)
j=1

By the Minkowskii integral inequality, we have

XJ(X s XUy oo Uy Xy 15 s Xg) dity,

4% £, =

p
t;  mi—1 mg—1 “
= J dl/llj Z z ajl,-v-,jd(ﬁ i
0 0 ji=—m Jd= —mg
X (A7 it uy+ - ) — ) ATE n P(As " x,— i) duy,
s#i V4
|4 14| ml —1 mg—1 .
\J j Z ajl,-u,jd¢ '
J1=—m Jd= —myg
X (ATt uy A+ e ) = i) AT H ¢(Asx,— )| du
RE2 P
d 1/p
:< [1 }'j> Ak H(‘J’(k')HLP[O 1] ”¢HLP[O 1] ”ajHlf2 |2]%
j=1
d 1/p
:Ci1<n ’1j> /“i_ki|ti|ki |‘aj‘|lj2' (2.5)
j=1
By (2.4), we have
d 1/p
145 ()l < e If1 <o ( I zj> a5 (26)
j=1

Thus, by (2.5) and (2.6), we have

d 1/p
4% £l < <H )l min{1 G AL @)



MULTIVARIATE BESOV CLASSES 165

Further, for 1 <6< oo, we get

s ‘(f <|Aﬁiﬂ.)|p>gdli>w
AN TA I

d 1/p
Sy < 1—[ ij> Haj Hl;ﬁz
J

=1

Ai © 1/6
x<j JRO RGO R 4 [ RO dR>
0 Ai

1/p
:Ci< l_[ ;“j> A HajHlfz- (2.8)

Jj=1

For the case 8= oo, (2.8) is also valid. Set

d 1/p
5N::< I1 /lj> 1 20) ey (cy= Hg/)HZp[O,l] +max{c;:i=1,..,d}),
j=1

On(dy) = {fe L, ;: ”%Hlfzééﬁl}'

Then it is easy to see that Oy < o7.

Now, we estimate the quantity d (.7, Lp(Rd)) from below, for 1 <p < co.
Let A be a subspace of L,(R?) with the average dimension dim(4, L,(R?))
< 0. By the definition of the average dimension, for any N >0, and ¢ >0,
there exists a subspace 4, ch(va) with the dimension K:=dim 4, =
K,(N, A, L,(I%)) such that

E(B(A)|IdN7 Al) LP(I]dV))S,S’

where B(A) denotes the unit ball of the space 4. Moreover, for any ge 4,
we have

e(g|1jiv7 Ala Lp(If]iV)) <8 Hng

Here we have put e(x, B, X) :=inf, )5 [|x(-) — y(-)| x, for any element x
of the subset B of the linear normed space X. Thus, for any f €.« and any
ge A, we have

If=gll, =1/ = &l
Ze(fs Ay, L(I5)) —elg. Ay, L(I3))
>e(f, Ay, LI5) —¢lgl,
Ze(f. Ay, LY) —e | /=gl ,—e I fll,
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This is

(L+e) If—gll,=e(fs A1, L) = | /1l
Further, we have

(1+¢) E(, A, L,(RY) = E(Qy, 4y, L (Id))—ﬁfsup /1 - (2.10)
€ON

By (2.4), (2.9), and Lemma 2, we have
d
(QNa Ala L < 1_[
d 1/p
<l_[ > Oon'=cus—“ (2.11)

By (2.10) and (2.11), then by letting N - oo and ¢ — 0, we get

/p
) ot s, 1)

d (o, L,(RY)>> po="

By (1.0), we complete the proof of Theorem 1.

3. PROOF OF THEOREM 2

Let / be an even number, 0 <a </, as in [10], for any feLp(Rd), we
define the differential operator D* by the following

(D))= lim, (D2 £)(x). (3.1)
ep~> o+

Here D¢ is an operator defined by

1 A%, f(x)
(D7 f)(x):= e Ay,
md,l(“) flyl;s |J’|d+
. (eiy1/2_e—iy1/2)l
mg (o) -—JRdey,

where y = ()1, V2, ... ya) € R For p>0, set

Sp.p S(x):= ) f< > Ly(px—v),

vezd
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where Lg(x) satisfies Ly(v) =6, o, ve Z?, and is defined by its generalized
Fourier transform
Ly(y)=(2n)~% —5-
! Svezaly—2vm|F

For a >0, put
W(RY) :={feL,(R")nC(R?):|D*|,<o0}.

By [5], we can get

LemmA 3. Let a>d/p, | <p<oo, p>0, f=a, and f>d. Then, for all
fe W;(Rd)(oc—d7é2, 4,..), there exists a constant ¢=c(a, p, ) >0, such
that

Hf_Sﬁ’,prpgcp_m HD“pr

For 1> 0, denote by SB2(R“) the set of all entire functions of spherical
exponential type </ (see [4]), we have the following inequality.

LemMA 4. Let A>0,1<p<oco, and o>0. Then, for all feSBZ(R?),
there exists a constant ¢ = c(a, p) >0 such that

1D N, < 2™ |1l -

Proof. By the definition of D%/ in (3.1), we have

14,11
D1, < | o (32)

Since f € SBZ(R?), it is easy to verify that

145 fll, < e [ /], min{ 1, (| v] 2)'}. (3.3)

Hence, by (3.2) and (3.3), we have

A1 o
Dl <es i, (4] et [t =

We complete the proof of Lemma 4.

Proof of Theorem 2. Upper estimate. For any fe SI’,GB(R"), by [4], f
may be represented in the form of a series converging to it in the sense of
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L(RY):f(x)=Y1cz, Qu(x), Z, =:{0,1, ..}, whose terms are entire func-
tions of spherical exponential type a’, a> 1, such that

1/6
{z a'*f’|Qa1,€} . 1<f<o,
1/ gty = 1<% (34)

sup a” Q- 0=co.
leZ

Let ae(d/p,r) and f>r. For p>1, let N be a natural number and satisfy
p<a” <2p. By Lemma 3 and Lemma 4, we have

HQal_ Sﬁ,anIHp < Cq P_ﬁ HDﬂQal”p
<ep~la” || Qull s (3.5)

for 0</<N-—1, and
1Qu—Sp, , Qutll p <1 p~ | D*Quill , < cp~a™ || Qut (3.6)

for /= N. Thus, by (3.5) and (3.6), we have

o N-—1 o
”f_S/i’,prp < Z |Qa1_Sﬂ,anl|p=< Z + Z > HQal_Sﬂ,anal
I1=0 1=0 I=N
N—-1 [°e)
<p P Y d’lQull,+p* Y d®11Qul,- (3.7)
I1=0 I=N

Further, by (3.4) and Holder inequality, we have

N—1 N—1 1/6 /N—1 /6’

Y d?Qul, < < Y a |Qal|§> < > al(ﬂ_rw)

1=0 1=0 1=0
< HfHB;g(Rd) a"PD < phr HfHB[’,g(Rd) (3.8)

and

e’} e} 1/6 e} 1/6'

Y d*[0ul, < < Y, a” |Qal|p> < > al(“_r)9>

I=N I=N I=N
< H.fHB;G(Rd) a MY« HfHB;Q(Rd) P (3.9)

for 1 << c0. By (3.7) to (3.9), we get

1= Sp o flp<<(p ™20 = p* ) 1 f | i
< p 7 IS By cre) - (3.10)
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For =1, oo, (3.10) is also valid. Let p =¢"“ By (3.10), we have

E7(SpeB(RY), L(R) < sup [ f=Spipfll,<<a™"

feSpB(RY)
Lower estimate. For any (€@, iec.,

card(( N[ —c, c]9) -

card ¢ = llcrr_{ io?f 207

there exists a cube with the form
O={xeR:q;<x;<a;+m~', j=1,..,d},

m=(20)", such that its interior Int QO does not contain any point of &;
that is, Int O n &= . This is easy to see from the fact that |Q] = (25) !
Let the univariate function A(z), € R, satisfy the following conditions:
Mt)e C®(R), suppAc[0,1], 0<At)<1 for teR, and A(¢)=1 for
te[4, 3] For 1 <p< oo, set

d
]_[ m(x;—a;)),

where # is a positive constant to be determined. It is easy to see that
Jo(x) e C=(RY), supp fo = O, I fo=0, and

1foll p < nm = (3.11)

It is easy to see that
145 fo() , < cypm =% min{ 1, (m |2])*}.
Further, we get

o0 1/6
110 gty < cmm <f6”_1 k=00t gy g 7o df>
m—1
<cspm =P (312)

For the case =00, (3.12) is also valid. By (3.11) and (3.12), if we let
n=m%""c¢=! (¢c=c;+1), then f,€S7,B(R?). Set

1 3
O={xeR:aq;+—<x;<a;+-—,i=1,..,d;.
4m 4m
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For any £ € ©,, we have

d(I: (I fo) 0 S o BR) = [ foll , = |1 fol 1,00 =1 101"
> em¥P="(2m) VP > g4, (3.13)

By (3.13) and the definition of 4,(S’,B(R?), L,(R)), we get

A,(S75B(R?), L,(R?))>> 0"

By (1.2), we complete the proof of Theorem 2.
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